Sialic Acid-Responsive Polymeric Interface Material: From Molecular Recognition to Macroscopic Property Switching
نویسندگان
چکیده
Biological systems that utilize multiple weak non-covalent interactions and hierarchical assemblies to achieve various bio-functions bring much inspiration for the design of artificial biomaterials. However, it remains a big challenge to correlate underlying biomolecule interactions with macroscopic level of materials, for example, recognizing such weak interaction, further transforming it into regulating material's macroscopic property and contributing to some new bio-applications. Here we designed a novel smart polymer based on polyacrylamide (PAM) grafted with lactose units (PAM-g-lactose0.11), and reported carbohydrate-carbohydrate interaction (CCI)-promoted macroscopic properties switching on this smart polymer surface. Detailed investigations indicated that the binding of sialic acid molecules with the grafted lactose units via the CCIs induced conformational transformation of the polymer chains, further resulted in remarkable and reversible switching in surface topography, wettability and stiffness. With these excellent recognition and response capacities towards sialic acid, the PAM-g-lactose0.11 further facilitated good selectivity, strong anti-interference and high adsorption capacity in the capture of sialylated glycopeptides (important biomarkers for cancers). This work provides some enlightenment for the development of biointerface materials with tunable property, as well as high-performance glycopeptide enrichment materials.
منابع مشابه
Use of laser-triggered gold nanoparticle-grafted dual light and temperature-responsive polymeric sensor for the recognition of thioguanine as anti-tumor agent
Objective(s): Today, there is an urgent need for improved sensor materials for drug sensing and effective monitoring and interventions in this area are highly required to struggle drug abuse. The present study aimed to synthesize a thioguanine-responsive sensor based on a nanocomposite consisting of AuNP-grafted light- and temperature-responsive poly butylmethacrylate-co-acrylamide-co-methacryl...
متن کاملHost Erythrocyte Engagement by PfEBA-140 1 Molecular Basis for Sialic Acid-dependent Receptor Recognition by Plasmodium falciparum Erythrocyte Binding Antigen 140/BAEBL
Background: PfEBA-140 recognizes sialic acid on its receptor Glycophorin C during erythrocyte invasion. Results: PfEBA-140 contains two sialic acid binding pockets distinct from other sialic acid binding proteins and with divergent roles in receptor recognition. Conclusion: The glycan binding pockets define receptor recognition, specificity, and putative switching. Significance: The first detai...
متن کاملA metal–ion-responsive adhesive material via switching of molecular recognition properties
Common adhesives stick to a wide range of materials immediately after they are applied to the surfaces. To prevent indiscriminate sticking, smart adhesive materials that adhere to a specific target surface only under particular conditions are desired. Here we report a polymer hydrogel modified with both β-cyclodextrin (βCD) and 2,2'-bipyridyl (bpy) moieties (βCD-bpy gel) as a functional adhesiv...
متن کاملThe Effect of Sialic Acid on miR-320a and let-7e Expression in Human Glial Cell Line
Introduction: Sialic acid plays pivotal roles in various critical physiological events at molecular and cellular levels and also pathological processes. Changes in sialic acid concentration are observed in many pathological processes; for example, there are some available data on the evaluated level of sialic acid and neurodegenerative prevalence. It can be proposed that sialic acid can play a ...
متن کاملA review on auxetic structures and polymeric materials
Auxetic polymeric materials are a special kind of materials that exhibit negative Poisson’s ratio (NPR) effect. They get fatter when stretched and thinner when compressed. Auxetic behavior is a scaleindependent property which can be achieved at different structural levels from molecular to macroscopic levels. The internal structure of material plays an important role in obtaining auxetic effect...
متن کامل